Negative regulation of vascular smooth muscle cell migration by blood shear stress.

نویسندگان

  • Jeremy Goldman
  • Lin Zhong
  • Shu Q Liu
چکیده

Vortex blood flow with reduced blood shear stress in a vein graft has been hypothesized to promote smooth muscle cell (SMC) migration and intimal hyperplasia, pathological events leading to vein graft restenosis. To demonstrate that blood shear stress regulates these processes, we developed a modified vein graft model where the SMC response to reduced vortex blood flow was compared with that of control vein grafts. Vortex blood flow induced SMC migration and neointimal hyperplasia in control vein grafts, whereas reduction of vortex blood flow in the modified vein graft strongly suppressed these effects. A venous polymer implant with known fluid shear stress was employed to clarify the molecular mechanism of shear-dependent SMC migration in vivo. In the polymer implant, the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and myosin light chain kinase (MLCK), found primarily in SMCs, increased from day 3 to day 5 and returned toward the control level from day 5 to day 10, with the peak phosphorylation associated with the maximal speed of SMC migration. Treatment with PD-98059 (an inhibitor specific to the ERK1/2 activator MEK1/2) significantly suppressed the phosphorylation of MLCK, suggesting a role for ERK1/2 in regulating the activity of MLCK. Treatment with PD-98059 or ML-7 (an inhibitor specific to MLCK) reduced shear stress-dependent SMC migration, resulting in an SMC distribution independent of fluid shear stress. These results suggest that fluid shear stress regulates SMC migration via the mediation of ERK1/2 and MLCK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

Pattern formation of vascular smooth muscle cells subject to nonuniform fluid shear stress: mediation by gradient of cell density.

Smooth muscle cells (SMCs) are organized in various patterns in blood vessels. Whereas straight blood vessels mainly contain circumferentially aligned SMCs, curved blood vessels are composed of axially aligned SMCs in regions with vortex blood flow. The vortex flow-dependent feature of SMC alignment suggests a role for nonuniform fluid shear stress in regulating the pattern formation of SMCs. H...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding.

Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC fun...

متن کامل

Rho-GDP dissociation inhibitor alpha downregulated by low shear stress promotes vascular smooth muscle cell migration and apoptosis: a proteomic analysis.

AIMS Low shear stress (LSS) plays a significant role in vascular remodelling during atherogenesis, which involves migration, proliferation, and apoptosis of vascular smooth muscle cells (VSMCs). The aim of the present study is to elucidate the molecular mechanisms by which LSS induces vascular remodelling. METHODS AND RESULTS Using proteomic techniques, two-dimensional electrophoresis, and ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 292 2  شماره 

صفحات  -

تاریخ انتشار 2007